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Abstract

An approach that simultaneously optimizes classification of students into two

treatments each followed by a mastery decision is presented using the framework

of Bayesian decision theory. The main advantages of handling the three decision

points simultaneously compared with separate optimization of such decisions are

more efficient use of data and the use of more realistic utility structures. Both

optimal weak monotone and strong monotone rules will be considered. The

results are empirically illustrated using data of the well-known problem in the

Netherlands of selecting optimal continuation schools on the basis of achievement

test scores.
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Introduction

In the relatively short period of time that instructional programs in

computer-aided instruction (CAI) systems have been under development, much

has been learned about the construction of instructional materials. Unfortunately,

corresponding progress does not seem to have been made on the matter of

developing appropriate testing methods and decision procedures for use in such

systems. An appropriate set of testing methods and making procedures would

facilitate an efficient flow of students through a CAI system.

In a typical individualized program the instruction is divided into

comparatively small instructional treatments or modules. In addition, all modules

are delimited by means of clear-cut learning objectives. In the case of an adaptive

CAI system. at several points of time decisions have to be made about how each

individual student should proceed from one inodule to another. Such decisions

mostly depend on the student's results on a few achievement test items

administered right after a module as well as his preceding (test) history in the

system.

The purpose of this research project is to formulate optimal rules for

instructional decision making in CAI systems in which the computer can be used

as a decision support tool. The successful implementation of a CAI system

depends, in part, upon the availability of appropriate testing and decirou making

procedures to guide the student through the system. For instance, if a student is

not directed to an appropriate module, his motivation may be decreased due to

not matching the instruction to his specific learning characteristics. Also, the
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(expensive) computer time can be considerably reduced by using better

instructional decisions in CAI systems.

Instructional networks in CAI systems can be represented as

combinations of four elen.entary test-based decisions, namely selection, mastery,

placement, and classification decisions (van der Linden, 1990). To optimize such

combinations of decision problems within a Bayesian decision-theoretic

framework (e.g., Ferguson, 1967), two major approaches can be distinguished.

First, each decision can be optimized separately maximizing the expected utility

for the test data exclusively gathered for this individual decision. Second, all

decisions can be optimized simultmeously maximizing the expected utility over

all possible combhiations of decision outcomes (Vos, 1991, 1993, 1994). This

paper explores how rules for the simultaneous optimization of combinations of

decisions can he found.

As an example, one classification decision with two treatments each

followed by a mastery decision are combined into a decision network (see Figure

I). The simple classification-mastery decision problem may be important in

classification of students in CAI systems with tracks at different levels followed

by a mastery test at the end of each track. Other well-known examples are

educational guidance situations where most promising schools must be identified,

which will be considered in Lit: empirical example later on.

Insert Figure I about here

Compared with separate optimization of decisions, it is expected that two

main advantages can be identified for a simultaneous approach. First, it is
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expected that rules can be found that make more efficient use of the data in the

decision network. Second, it is expected that more realistic utilitjf structures can

be handled in a simultaneous approach.

The classification-mastery decision problem

In classification, the decision problem consists of a choice among

several alternative treatments to which students have to be assigned on the basis

of their test scores. Prior to the treatments, all students are administered the same

classification test and the success of each treatment is measured by its own

criterion. Completion of each treatment is followed by a mastery test which the

student may pass or fail. Performance on this test is used to decide whether or

not the students have profited enough from a treatment to be dismissed and to

proceed with a subsequent treatment

In the following, we shall suppose that the test scores observed prior to

the treatments are denoted by a random variable X. Each treatment j is followed

by a mastery test, with scores denoted by a random variable Yj (j=0,l). Let Tj

represent the classical test theory true score underlying Y. Furthermore, it is

assumed that the classification of subjects into j treaunents yield a joint

distribution 5 (x,yktj) of X, Yj, and T.

Resealing of the criterion variables

For technical reasons the observable criterion variables Yo en Y1 will be

resealed such that they both take values on the same domain. As a result, for the

realizations yo and y of the random variables Yo and Y 1, the indices 0 and 1
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can be dropped in the remainder of this paper. This is because yo and y1 now

represent mathematical variables with the sarre domain. Of course, this does not

mean that a subject does rtceive the same value for y if (s)he follows different

treatments.

On the other hand, the indices 0 and 1 will be maintained for Yo and Y1

because they represent different random variables. Also, the indices 0 and I will

be maintained in the associate density and cumUlative distribution functions.

Similarly, since T is defined as the expectation of Y according to

classical test theory, the indices 0 and 1 will be dropped for the realizations to

and ti of To and T1 whereas the indices will be maintained again for the random

variables To and T1 as well as their associated density and cumulative

distribution functions.

In accordance with the foregoing all functions of y and t to be

introduced below will be defined on the new scale.

Weak monotone and strong monotone rules

In the present paper, we restrict the range of all possible decision rules

by considering only monotone rules; that is, rules using cutting scores. Let xc,

and tcj denote the cutting scores on the random variables X, Yj and T.

respectively, where to is set in advance by the decision maker. The

classification-mastery decision problem now consists of simultaneously setting

cutting scores xc and yo such that, given the value of to, the expected utility is

maximized (j=0,1).

In general, the observed scores on the classification test may or may not

be explicitly taken into account in setting cutting scores on the mastery test score

variable Y (j=0,1). For instance, it seems reasonable that students who are
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assigned to treatment 1 with observed classification ,cores equal to or just above

xc must compensate their relatively low classification scores with higher scores

on the mastery test Y1. To distinguish between cases where ycj is or is not

allowed to depend on x, those rules will be denoted by weak monotone and

strong monotone rules, respectively. Thus, for each x < xc and x xc, the weak

cutting scores on the mastery tests Yo and Y1 have to be computed from some

functions yco(x) and yc1(x), respectively.

Let ajh stand for the action either to retain (h=0) or advance (h=1) a

student who is classified into treatment j (j=0,1), then for the decision network of

Figure 1 the most general form of the decision rule is a weak rule 8 defined as:

{(x,y):8(x,y)=a00) = A x I30(x)

Rx,y):8(x,y)=a,01) = A x Boc(x)

{(x.y):5(x,y)=a10) = Ac x B1(x)

((x.y):8(x,y)=a111 = Ac x

where A, Ac, Bj(x), and Bjc(x) stand, respectively, for the sets of x and y values

for which a student is classified into treatment 0. into treatment 1, retained in

treatment j, and advanced in treatment j. Thus, a weak monotone rule 8 can be

defined for our example as:

ttoo for X < xc, YO < Yc0(x)

a01 for X < xc, YO yc0(x)

a 10 for X ?_ xc, Y1 < ycl(x)

al 1 for X _? xc, Y
1 yc 1(x).
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Since we confine ourselves to monotone rules in this paper, we are to

show that there are no nonmonotone rules with larger expected utility, or,

equivalently, that the subclass of monotone rules constitutes an essentially

complete class (e.g., Ferguson, 1967, p. 55). Conditions under which the subclass

of weak monotone rules is essentially complete are given in Vos (1994). If these

conditions are met, a weak monotone solution is said to exist.

An additive threshold utility function

A utility function ujh(t) evaluates the consequences of taking action ajh

while the true score of the student is t. In the present paper, it is assumed that the

utility structure of the combined problem can be represented as an additive

function of the following form:

11011(t) = w 1u0e(t) w2u0hin(t)

ulh(t) = wlulc(t) w3ulhin(t)

(3)

where u. (t), u. tun(t) represent the utility functions for the separate classificationjc j

and mastery decisions under treaunent j, respectively, and w1, w2, and wl

represent nonnegative weights. Since utility is measured at least on an interval

scale, assuming w2 = wl (i.e., the utility functions for both mastery decisions are

equally weighted), the weights in (3) can always be resealed as follows:

tijh(t) = wujc(t) + [(1-w)/2]nihm(t) (4)

where the weight w should obey 0 w 1.
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In the Introduction it was remarked that one of the main advantages of a

simultaneous apprnach was that more realistic utility structures can be handled.

This fact is nicely demonstrated by the additive structure of (4), in which utility

functions defined on the ultimate criteria variables TO and T1 can also be used in

previous decision problems, namely the problem of classifying students into

treatment 0 and treatment 1.

In the classification-mastery problem, the following well-known

threshold utility functions (e.g., Hambleton & Novick, 1973) are adopted for the

separate classification and mastery decisions:

u (t) =jC

Ujhm(t) =

bi
0

for Tj < tri

bil for Ti

d for h = O. Tj < tc.j
100

for h = 1, Tj < tejdj 01

dj10 for h = 0 T. > tj cj

for h = 1, Ti tci.

(5)

(6)

The choice of threshold utility functions imply that the 'seriousness' of

all ilossible consequences of we decisions can be s!nnmarized by four and eight

constants in (5) and (6), one for each of the four and eight possible decision

outcomes, respectively. The utility parameters bib, djho, and djh (j,h=0,1) can be

empirically assessed using lottery methods (e.g., Hambleton & Novick, 1973).

12
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Optimal weak monotone and SMMEU rules

For each of the four possible actions, inserting the additive threshold

utility function from (3) - (6), the expected utility with respect to fj(x,y,t) can be

calculated. Adding up these expected utilities yields the expected utility for the

simultaneous approach, Egl(Ac,Boc(x),B1c(x))). In Vos (1994) it is indicated

th an upper bound to E[Usim(Ae,B0c(x),131c(x))) is obtained if the sets Boc(x),

B1c(x), and Ac take the fonn {y I g(x,y) ?. 0}, (y1h(x,y) 0), and

{x k(x,B0c(x),B1c(x)) 0), respectively, with 130c(x) and B1c(x) appearing as

integration regions in the function k(x,13oc(x),B1c(x)).

.Ontimal weak monotone rules

For weak monotone rules, the sets 13.c(X) and Ac take the form
J

[Yci(x),c01 and Exc,..31, respectively. Assuming the monotonicity conditions for

weak simultaneous rules are satisfied, it thei . follows that optimal weak monotone

rules can be found for those values of yco(x), ycl(x) and xc for which

g(x'yc0(x)) = 0, h(x,yci(x)) = 0, and k(xcyco(xc),Yc 1(xcn 0, respectively.

Since g(x,yco(x)) = 0 and h(x,yc1(x)) = 0 hold for all x, and thus for xc,

the optimal weak cutting score on the classification test can be found by solving

gt xcyc0(xc)) = 0, h(x.yci(xc)) = 0, and k(xc'Yc0(xc).Ycl(xc)) 0 simultaneously

for xc, yco(xc), and ycl(xc). For each x < xc and x xc, the optimal weak

cutting scores on the mastery tests Yo and Y1 can be obtained by solving

g(x.yco(x)) = 0 and h(x,ycl(x)) = 0 for yco(x) and yc (x), respectively.

13
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SMMEI1 rules

Since in educational testing one is accustomed to using strong cutting

scores, optimal rules will also be derived within the subclass of strong monotone

rules without bothering about monotonicity conditions. This type of rules will be

termed SMMEU (strong monotone rules with maximum expected utility) rules.
* *The set of SMMEU cutting scores, say xc, ycO' and Ycl, can be

obtained by inserting Ac = [xc,03] and Bjc(x0 = [y00] into

EjUsim(Ac,130c(x),Blc(x)j, differentiating w.r.t. x_, v and yci, setting thec ,c0'
resulting expressions equal to zero, and solving simultaneously for xc, yco, and

yci (Vos, 1994).

The opthnal weak and SMMEU cutting scores can now be computed

from the systems of nonlinear equations to be solved. Assuming a trivariate

normal distribution for fj(x,y,t), a computer program called NEWTON, available

on request from the author, was written to calculate the cutting scores iteratively

(Vos, 1994). For each x < xc and x xc, the optimal weak cutting scores on the

mastery tests under treatment 0 and 1, yc0(x) and yc1(x), were computed

iteratively by solving g(x,yco(x)) = 0 and h(x,yc1(x)) = 0 for yco(x) and yci(x),

respectively. These procedures were also implemented in NEWTON. In the

program NEWTON only the utility parameters bjh, djho, and dihi, the weight w

(i.e., the relative influence of the separate classification decision in %), and the

clitting score tcj on the true score scale Tj have to be specified by the decision

maker (j,h=0,1).

It is important to notice that the weak montone approach actually

provides us with some 'artificial intelligence' for setting optimal weak cutting

scores. The more test data of each student comes available, the better the optimal

weak cutting scores for each student can be set. In fact, the optimal weak cutting
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scores on the classification test still have to be set for all students at the same

point xc, while the optimal weak cutting scores on the mastery tests, y(x) and

yeo(x), can be set by taking explicitly into account each student's observed score

on the classification test. In other words, the program NEWTON operates as an

Intelligent Tutoring System (ITS) in the sense of monitoring the student through

the instructional network in such a way that optimal advantage is taken of each

student's preceding (test) history in the CAI system.

An application to a real-life decision problem

The numerical example concerns the assignment of pupils to appropriate

continuation schools at the end of the elementary school (i.e., at grade 8), a

problem that is well-known in the Dutch educational system. The Dutch National

Institute of Educational Measurement (C1TO) prepares annually an achievement

test (Eindwas Basisonderwijs), which is used by most elementary schools for

this purpose. In addition, on the basis of a grade-point average, it is decided

whether or not a pupil will finish the first year of secondary school j

successfully. This means that the problem can be characterized as a classification-

mastery decision. Test scores on the CITO achievement test as well as the grade

point average range from 0-50.

In the analyses reported here, Lower Vmational Education (LVE) and

Lower General Education (LGE) were selected as treatments with 1333 and

15926 pupils assigned to each of them, whereas LVE en LGE could be

considered as treatment 0 ('lower') and I (' higher), respectively.

15
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Pupils were considered as having passed the first year of school 0 and 1

successfully if they had mastered at least 52% and 54% of the total subject

matter, respectively, at the end of the first year. Therefore, tc0 and ta were fixed

at 26 and 27, respectively.

The necessary statistics to compute the optimal weak monotone and

SMMEU rules were estimated using maximun likelihood estimates. The results of

the computations are shown in Table 1.

Insert Table 1 about here

Results for the simultaneous approach

Using the program NEWTON, the SMME11 and set of weak cutting

scores ()re, yc0( xc), ycl(xc)) were computed for three different values of the utility

parameters as well as for w = 0.3, 0.6, and 0.9. The results are summarized in

Table 2.

Insert Table 2 about here

The optimal weak monotone rules are given by xc, yco(x) for x< xc, and ycl(x)

for x xc. Using the program NEWTON, it appeared that both yo(x) and yd(x)

were very slowly decreasing in x for x < xc and x xc, respectively. These

patterns were in accordance with our expectations that students with classification

scores far above or just below xc are sooner allowed to proceed with the next

treatment than pupils with classification scores just above or far below xc.

As can be seen from Table 2. and using the decreasing character of
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yci(x), increasing values of w resulted in higher optimal weak cutting scores on

the classification test, whereas the optimal weak cutting scores on both mastery

tests were hardly infh;enced by the value of w. This makes sense since one might

expect that with increasing weight for ujc(t), classification into the 'higher'

treatment becomes less likely.

Optimal separate cutting scores

In Vos (1994) it is indicated that optimal cutting scores for the separate

classification and mastery decisions, say xc,sep and ycjsep, can easily be derived

imposing certain restrictions on the expected utility for a simultaneous approach.

The results are also summarized in Table 2.

As can be seen from Table 2, in particular for low values of w, the

optimal cutting scores for the separate classification decision were remarkably

higher compared with those in the weak monotone model, implying that students

were much sooner assigned to higher types of education in the weak monotone

model.

Furthermore, Table 2 shows that yco(xc) and yci(xc) were somewhat

higher compared to v,c0,sep and Ycl,ser respectively. This makes sense, because

if students were sooner assigned to the 'higher' treatment in a weak monotone

approach it seems reasonable that those students who were just classified into

treaunent 0 and 1 had to compensate their relatively low classification scorcs

with higher optimal weak cutting scores on the mastery tests. The decreasing

character of yo(x) in x, however, implies that with increasing classification

scores the optimal weak cutting scores on the mastery tests can be slowly

decreased again.

17
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Comparison of expected utilities

In the Introduction it was remarked that one of the main advantages of a

simultaneous approach was the expectation that rules making more efficient use

of the data in the decision network could be found. As a consequence, one might

expect an increase in expected utility compared with a separate approach. To

investigate whether this expectation could be confirmed, the weighted sum of the

expected utilities for the optimal separate rules was compared with the expected

utilities for a simultaneous approach using a computer program called 1.1TILITY,

available on request from the author. The results are also depicted in Table 2.

Table 2 indicates that, although the differences were rather small, the

weak monotone approach yielded the largest expected utility for all three

approaches for all utility structures. In particular, for a large weight for the utility

of the clasification decision, hardly any differences could be found. Though this

result do s not contradict our predictions, we did have stronger expectations.

Concluding remarks

A final remark is appropriate. The models presented in this paper were

applied to the problem of assigning students to optimal types of secondary

education. However, the procedures advocated in this paper have a larger scope.

For instance, in addition to the important application of deriving optimal rules for

instructional decision making in CAI systems, the simple classification-mastery

decision problem may be useful in the area of psychotherapy in which patients

have to be classified into the most appropriate therapy followed by a test, which

has to be passed before they can be dismissed from the therapy.

18
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Table 1

Statistics Classification and Mastery Tests (X and Y.)

Statistic X

0

Treatment

Mean 34.324 31.551 29.621

Standard Deviation 7.971 3.246 2.208

Reliability 0.812 0.803

Correlation Po = 0.129 0 1 = 0.365

*--111
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Figure Caption

Figure I A system of one classification decision with two treatments

each followed by a mastery decision.
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